Extensions 1→N→G→Q→1 with N=C22 and Q=C6.D4

Direct product G=N×Q with N=C22 and Q=C6.D4
dρLabelID
C22×C6.D496C2^2xC6.D4192,1398

Semidirect products G=N:Q with N=C22 and Q=C6.D4
extensionφ:Q→Aut NdρLabelID
C22⋊(C6.D4) = C25.S3φ: C6.D4/C23S3 ⊆ Aut C2224C2^2:(C6.D4)192,991
C222(C6.D4) = C24.29D6φ: C6.D4/C2×Dic3C2 ⊆ Aut C2296C2^2:2(C6.D4)192,779
C223(C6.D4) = C25.4S3φ: C6.D4/C22×C6C2 ⊆ Aut C2248C2^2:3(C6.D4)192,806

Non-split extensions G=N.Q with N=C22 and Q=C6.D4
extensionφ:Q→Aut NdρLabelID
C22.1(C6.D4) = C2×C23.7D6φ: C6.D4/C2×Dic3C2 ⊆ Aut C2248C2^2.1(C6.D4)192,778
C22.2(C6.D4) = C4○D43Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C2296C2^2.2(C6.D4)192,791
C22.3(C6.D4) = C4○D44Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C2296C2^2.3(C6.D4)192,792
C22.4(C6.D4) = (C6×D4).11C4φ: C6.D4/C2×Dic3C2 ⊆ Aut C2296C2^2.4(C6.D4)192,793
C22.5(C6.D4) = C2×Q83Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C2248C2^2.5(C6.D4)192,794
C22.6(C6.D4) = (C6×D4)⋊9C4φ: C6.D4/C2×Dic3C2 ⊆ Aut C22484C2^2.6(C6.D4)192,795
C22.7(C6.D4) = (C6×D4).16C4φ: C6.D4/C2×Dic3C2 ⊆ Aut C22484C2^2.7(C6.D4)192,796
C22.8(C6.D4) = C12.8C42φ: C6.D4/C22×C6C2 ⊆ Aut C2248C2^2.8(C6.D4)192,82
C22.9(C6.D4) = C24.13D6φ: C6.D4/C22×C6C2 ⊆ Aut C2248C2^2.9(C6.D4)192,86
C22.10(C6.D4) = C423Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C22484C2^2.10(C6.D4)192,90
C22.11(C6.D4) = (C2×C12).Q8φ: C6.D4/C22×C6C2 ⊆ Aut C22484C2^2.11(C6.D4)192,92
C22.12(C6.D4) = C245Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C22244C2^2.12(C6.D4)192,95
C22.13(C6.D4) = (C22×C12)⋊C4φ: C6.D4/C22×C6C2 ⊆ Aut C22484C2^2.13(C6.D4)192,98
C22.14(C6.D4) = C424Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C22484C2^2.14(C6.D4)192,100
C22.15(C6.D4) = C42.Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C22484C2^2.15(C6.D4)192,101
C22.16(C6.D4) = C425Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C22244C2^2.16(C6.D4)192,104
C22.17(C6.D4) = C42.3Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C22484C2^2.17(C6.D4)192,107
C22.18(C6.D4) = C24.6Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C2248C2^2.18(C6.D4)192,766
C22.19(C6.D4) = C24.74D6φ: C6.D4/C22×C6C2 ⊆ Aut C2296C2^2.19(C6.D4)192,770
C22.20(C6.D4) = (C6×D4)⋊6C4φ: C6.D4/C22×C6C2 ⊆ Aut C2248C2^2.20(C6.D4)192,774
C22.21(C6.D4) = (C6×Q8)⋊6C4φ: C6.D4/C22×C6C2 ⊆ Aut C2296C2^2.21(C6.D4)192,784
C22.22(C6.D4) = (C2×C12)⋊3C8central extension (φ=1)192C2^2.22(C6.D4)192,83
C22.23(C6.D4) = C24.3Dic3central extension (φ=1)48C2^2.23(C6.D4)192,84
C22.24(C6.D4) = C24.12D6central extension (φ=1)48C2^2.24(C6.D4)192,85
C22.25(C6.D4) = (C2×C12)⋊C8central extension (φ=1)96C2^2.25(C6.D4)192,87
C22.26(C6.D4) = C12.C42central extension (φ=1)192C2^2.26(C6.D4)192,88
C22.27(C6.D4) = C12.(C4⋊C4)central extension (φ=1)96C2^2.27(C6.D4)192,89
C22.28(C6.D4) = C12.2C42central extension (φ=1)48C2^2.28(C6.D4)192,91
C22.29(C6.D4) = C12.57D8central extension (φ=1)96C2^2.29(C6.D4)192,93
C22.30(C6.D4) = C12.26Q16central extension (φ=1)192C2^2.30(C6.D4)192,94
C22.31(C6.D4) = C2×C12.55D4central extension (φ=1)96C2^2.31(C6.D4)192,765
C22.32(C6.D4) = C2×C6.C42central extension (φ=1)192C2^2.32(C6.D4)192,767
C22.33(C6.D4) = C2×D4⋊Dic3central extension (φ=1)96C2^2.33(C6.D4)192,773
C22.34(C6.D4) = C2×C12.D4central extension (φ=1)48C2^2.34(C6.D4)192,775
C22.35(C6.D4) = C2×Q82Dic3central extension (φ=1)192C2^2.35(C6.D4)192,783
C22.36(C6.D4) = C2×C12.10D4central extension (φ=1)96C2^2.36(C6.D4)192,785
C22.37(C6.D4) = (C6×D4)⋊C4central stem extension (φ=1)48C2^2.37(C6.D4)192,96
C22.38(C6.D4) = (C6×Q8)⋊C4central stem extension (φ=1)48C2^2.38(C6.D4)192,97
C22.39(C6.D4) = C42.7D6central stem extension (φ=1)96C2^2.39(C6.D4)192,99
C22.40(C6.D4) = C42.8D6central stem extension (φ=1)192C2^2.40(C6.D4)192,102
C22.41(C6.D4) = C12.9D8central stem extension (φ=1)96C2^2.41(C6.D4)192,103
C22.42(C6.D4) = C12.5Q16central stem extension (φ=1)192C2^2.42(C6.D4)192,105
C22.43(C6.D4) = C12.10D8central stem extension (φ=1)192C2^2.43(C6.D4)192,106

׿
×
𝔽