extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C6.D4) = C2×C23.7D6 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C22 | 48 | | C2^2.1(C6.D4) | 192,778 |
C22.2(C6.D4) = C4○D4⋊3Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.2(C6.D4) | 192,791 |
C22.3(C6.D4) = C4○D4⋊4Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.3(C6.D4) | 192,792 |
C22.4(C6.D4) = (C6×D4).11C4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.4(C6.D4) | 192,793 |
C22.5(C6.D4) = C2×Q8⋊3Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C22 | 48 | | C2^2.5(C6.D4) | 192,794 |
C22.6(C6.D4) = (C6×D4)⋊9C4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.6(C6.D4) | 192,795 |
C22.7(C6.D4) = (C6×D4).16C4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.7(C6.D4) | 192,796 |
C22.8(C6.D4) = C12.8C42 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | | C2^2.8(C6.D4) | 192,82 |
C22.9(C6.D4) = C24.13D6 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | | C2^2.9(C6.D4) | 192,86 |
C22.10(C6.D4) = C42⋊3Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.10(C6.D4) | 192,90 |
C22.11(C6.D4) = (C2×C12).Q8 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.11(C6.D4) | 192,92 |
C22.12(C6.D4) = C24⋊5Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 24 | 4 | C2^2.12(C6.D4) | 192,95 |
C22.13(C6.D4) = (C22×C12)⋊C4 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.13(C6.D4) | 192,98 |
C22.14(C6.D4) = C42⋊4Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.14(C6.D4) | 192,100 |
C22.15(C6.D4) = C42.Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.15(C6.D4) | 192,101 |
C22.16(C6.D4) = C42⋊5Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 24 | 4 | C2^2.16(C6.D4) | 192,104 |
C22.17(C6.D4) = C42.3Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.17(C6.D4) | 192,107 |
C22.18(C6.D4) = C24.6Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | | C2^2.18(C6.D4) | 192,766 |
C22.19(C6.D4) = C24.74D6 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 96 | | C2^2.19(C6.D4) | 192,770 |
C22.20(C6.D4) = (C6×D4)⋊6C4 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 48 | | C2^2.20(C6.D4) | 192,774 |
C22.21(C6.D4) = (C6×Q8)⋊6C4 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C22 | 96 | | C2^2.21(C6.D4) | 192,784 |
C22.22(C6.D4) = (C2×C12)⋊3C8 | central extension (φ=1) | 192 | | C2^2.22(C6.D4) | 192,83 |
C22.23(C6.D4) = C24.3Dic3 | central extension (φ=1) | 48 | | C2^2.23(C6.D4) | 192,84 |
C22.24(C6.D4) = C24.12D6 | central extension (φ=1) | 48 | | C2^2.24(C6.D4) | 192,85 |
C22.25(C6.D4) = (C2×C12)⋊C8 | central extension (φ=1) | 96 | | C2^2.25(C6.D4) | 192,87 |
C22.26(C6.D4) = C12.C42 | central extension (φ=1) | 192 | | C2^2.26(C6.D4) | 192,88 |
C22.27(C6.D4) = C12.(C4⋊C4) | central extension (φ=1) | 96 | | C2^2.27(C6.D4) | 192,89 |
C22.28(C6.D4) = C12.2C42 | central extension (φ=1) | 48 | | C2^2.28(C6.D4) | 192,91 |
C22.29(C6.D4) = C12.57D8 | central extension (φ=1) | 96 | | C2^2.29(C6.D4) | 192,93 |
C22.30(C6.D4) = C12.26Q16 | central extension (φ=1) | 192 | | C2^2.30(C6.D4) | 192,94 |
C22.31(C6.D4) = C2×C12.55D4 | central extension (φ=1) | 96 | | C2^2.31(C6.D4) | 192,765 |
C22.32(C6.D4) = C2×C6.C42 | central extension (φ=1) | 192 | | C2^2.32(C6.D4) | 192,767 |
C22.33(C6.D4) = C2×D4⋊Dic3 | central extension (φ=1) | 96 | | C2^2.33(C6.D4) | 192,773 |
C22.34(C6.D4) = C2×C12.D4 | central extension (φ=1) | 48 | | C2^2.34(C6.D4) | 192,775 |
C22.35(C6.D4) = C2×Q8⋊2Dic3 | central extension (φ=1) | 192 | | C2^2.35(C6.D4) | 192,783 |
C22.36(C6.D4) = C2×C12.10D4 | central extension (φ=1) | 96 | | C2^2.36(C6.D4) | 192,785 |
C22.37(C6.D4) = (C6×D4)⋊C4 | central stem extension (φ=1) | 48 | | C2^2.37(C6.D4) | 192,96 |
C22.38(C6.D4) = (C6×Q8)⋊C4 | central stem extension (φ=1) | 48 | | C2^2.38(C6.D4) | 192,97 |
C22.39(C6.D4) = C42.7D6 | central stem extension (φ=1) | 96 | | C2^2.39(C6.D4) | 192,99 |
C22.40(C6.D4) = C42.8D6 | central stem extension (φ=1) | 192 | | C2^2.40(C6.D4) | 192,102 |
C22.41(C6.D4) = C12.9D8 | central stem extension (φ=1) | 96 | | C2^2.41(C6.D4) | 192,103 |
C22.42(C6.D4) = C12.5Q16 | central stem extension (φ=1) | 192 | | C2^2.42(C6.D4) | 192,105 |
C22.43(C6.D4) = C12.10D8 | central stem extension (φ=1) | 192 | | C2^2.43(C6.D4) | 192,106 |